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A mechanical system with aftereffect is considered, on the assumption that its state at a time t depends 

not only on its phase coordinates at the time I and on the time itself, but also on the phase coordinates 

at all previous times from the initial time I, on. Lyapunov’s first method is used to investigate the 

stability of motion of such a system. A general solution is constructed for the equations of motion in 

the neighbourhood of the asymptotically stable trivial solution of the linearized equations, and 

asymptotic (exponential) stability is proved for the full equations. To demonstrate the application of 

the method to systems with distributed parameters, the stability of equilibrium of a visco-elastic rod 

under torsion is considered. 

THE CONDITIONS outlined above are satisfied by systems described by Volterra integro- 
differential equations [l], which may contain non-linear functionals. Frechet showed [2] that in 
the analytic case such functionals can be represented by series of multiple integrals. In practical 
applications one often considers only segments of these series. Equations of a similar kind find 
application, in particular, in models of visco-elasticity [3-51 and aeroelasticity [6-8]. 

1. We shall investigate the stability of the motion represented by the trivial solution of the 
equation 

a5 -_ = A(t)x + j K(t,s)x(s)rfs + F(x,u,r), XER", u E R" 
dt '0 

U-1) 

where the continuous n x n matrices A(t) and K(t, S) are defined for t E I = {t E R : t 2 to) and (t, 
+J;={(r, s)eR*: t ,, =S s c t c +=}, respectively, the vector-valued function F(x, u, t) is analytic 
in the neighbourhood of the point x = 0, u = 0 and does not contain linear and free terms. The 
coefficients of the expansion F(x, U, t) in powers of x = co1 (x1, . . . , x,), u = co1 (4, . . . , u,) are 
continuous and bounded for t ~1; ui are analytic functionals represented by absolutely 
convergent Volterra-FrCchet series 

(1.2) 

in which K,!(‘)(t, s,, . . . , 
sJ E Rk+’ : 

sk) are continuous functions defined on the set J: = ((r, s,, . . . , 
t,ssj<t<+=, j=l, . . . , k). In this formula (and throughout this paper) the 

superscript j(k) denotes the sequence of indices jl, . . . , 
K(t, S), K,!“k’(t, S,, . . . , 

jk. Note that in general the kernels 
s,) in (1.1) (1.2) will have singularities of the same type as the Abel 
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kernels on the boundaries of their domains of definition at s = t and sj = t (j= 1, . . . , k), 
respectively. To be more definite, we shall assume that the kernels K/@)(t, s,, . . . , s,) in (1.2) 
satisfy the following limit on the set J; 

(1.3) 

where the constants C > 0, 0~ p< 1 are independent of k and a, 2 01 (p = 1, 2, . . .) for some 
a > 0. 

Consider the Cauchy problem with initial condition x0 =x(&J (x,, = col(x,,, . . . , x0,,)). Let 
X(t, t,,) denote a fundamental matrix of solutions of the linearized equation (1.1) such that 
X(t,, 4)) = K. 

Theorem 1. Assume that the kernels in Eqs (1.1) and (1.2) satisfy condition (1.3), and 
moreover 

and let y be such that 
Then E>O (e<y), 

II X0, s) II s C’exp[-P(t -$)I, C’, p > 0 - const (1.4) 

0 c y < min(a, /3). 
6 >O exist such that the general solution of Eqs (1.1) and (1.2) in the 

neighbourhood of zero admits of series expansions 

xi(t)=: C S;“(“‘(t)exp[-(y-e)(t-to)]xz . ..x> 
m=lq+...+m,=ni 

(1.5) 

whose coefficients S,?(“)(t) are continuous and bounded for t E I. The series (1.5) converge 
absolutely and uniformly for II x0 II< 6 for some 6 > 0, and the trivial solution is exponentially 
stable. 

Remark.X(t, s) is a matrix of the difference type if A is a constant matrix and K(t, s)= K’(t-s). 
Condition (1.4), which means that the trivial solution of the linearized equation (1.1) is asymptotically 

(exponentially) stable, is easily verified, for example, in the case when K(t) is an exponential polynomial. 

The proof of Theorem 1 is based on Lyapunov’s first method [9] and proceeds along the 
lines of the proofs in [lo, 111. We will represent the functionals y as series similar to (1.5) 

Ui = ~ c /$::"'"'(t)exp[-(y -e)(t - t,)]xz . . . xr; (l-6) 
m=l q+...+mn=m 

The coefficients $“(“)(t) and em’“‘(t) of the series (1.5) and (1.6) are determined successively, 
using (1.2) and the integral equation [12] 

x(t) = W,t,)x, + i X(t,s)F(x(s),u(s),s)ds 
t0 

which is equivalent to Eq. (1.1) with an initial condition. Under these conditions all the 
functions S:(“)(t), e”‘@‘(t) are bounded when t E 1. 

Suppose that the series ui and wi are majorants for xi and y, respectively, and that F*(x, 
y)%i;(x, y, t) for t E I; let CT; be a positive matrix such that 

X.(t, s) G C’ exp[-/I(t - s)l 

where the elements of X.(t, s) are taken modulo the corresponding elements of X( t, s). We can 
then set up majorizing equations [lo] 
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wi = CA ~Uj+B i uAu~+...+B’-’ ~ ( j=l jl.h=l k,..., jr=1 
Us . ..Uj. +... I = 

CA 

= B(l-z) 

z = By ~j, 
j=l 

v = c*xo + M’F’(U, w), A= D(a-y+&), B =D(a) 

l 

lv’ ’ 8-2cy+2E (exp[-(~-~)(~-~o)l-exp[-(~-y+~)(t-to)l) 

‘0 = COl(U,,...,U,), w = COl(Wi,..., w,) 
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(1.7) 

(1.8) 

in which M* is a constant positive matrix. 
Equations (1.7) and (1.8) determine vi and wi as an absolutely convergent power series for 

II x,, II< 6. To determine 6 one can proceed as in [13]. 
An analogue of Theorem 1 for systems with distributed parameters is the assertion stated in 

Sec. 2, concerning the stability of equilibrium of a visco-elastic rod under torsion. 

2. Consider a thin visco-elastic rod of length I, one end of which is clamped and the other 
free, under torsion around an axis Oz where 0 is the left end of the rod. 

We shall assume that the axis of the rod is not deformed, that the cross-sections of the rod 
remain plane and that displacements of the points in a cross-section may occur only due to 
rotation of the cross-section as a whole. The distribution of masses over all cross-sections 
orthogonal to the rod axis is assumed to be the same. 

The rod is subject to external body forces whose moment in each cross-section depends only 
on the angle of torsion 8 of that section. The lateral surface is free of the action of the external 
forces. The moment of the visco-elastic forces depends on ae/az and is determined by a linear 
Volterra integral operator [l] 

sew) M(ci,Z,f) = k, - 
az + i &*(t-s) sew ds 

to az 

where k, is the (constant) torsional rigidity, and the relaxation kernel k*(r) is continuous in 
t E I. The equation of motion, derivable by using the Hamilton-Ostrogradskii principle for 
systems with distributed parameters [14], is 

4 
a*etz, t) 

at2 
- k, E!i$ _ j k,(t_s) a2y & - f(9) = 0 

b 
(2.1) 

where Z1 is the moment of inertia of a rod of unit length about its axis, and f(0) is the moment 
of the external forces. We shall assume that f(t3) is an odd function and can be expanded in a 
convergent power series in the neighbourhood of zero, so that 

f(e) = ai1 a2n_le2fl-lr %I-1 = const 

If, for example, the rod is in a horizontal position in the field of gravity and the distance 
between the centre of mass of the cross-section and the rod axis is r, then f(e) = -mgrsin 8, 
where mg is the weight of a rod of unit length. 

We shall investigate the stability of the equilibrium position corresponding to the trivial 
solution of Eq. (2.1), relative to perturbations at time t = to of the angle (0, X, t) and its velocity, 
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subject to the boundary conditions 

8 (0, c) = &(z, I)/ az I,,! = 0 (2.2) 

To that end, we put 8 = pU (f,t = const+l) and construct the general solution of Eq. (2.1) in 
the neighbourhood of zero as a series 

U(z,t) = $ ,ji, p*‘-* sin (akz) TJ*“-l’(r) (2.3) 

where, by virtue of our boundary conditions, we have put a, = rc(2k-1)/(21). Substituting 
the series (2.3) into (2.1), we see that, by the properties of Eq. (2.1), a solution may be 
obtained-at least, formally-in the required form. When that is done the functions 7”-‘)(t) 
(k, n = 1,2, . . .) will be solutions of the equations 

4 

+ 

where SC-‘)(r) = 0 and Sr-3)(r) ._k _. (n=2, 3, . . .) are known continuous functions, if all the func- 
tions SF”-j)(t) are known for m < n and k = 1,2, . . . . 

Let us assume that the initial values e(z, t,) = p.cp(z) and &(z, t)l& &= pv(z) are sufficiently 
smooth functions, expanded in Fourier series over the interval [0, I] with respect to the system 
of functions sin(a,z). Let 

d*T-*“-“(t) 
dt* 

+ (k,a2, - a,) T~2n-‘)(f) + 

ai i k2(t-s)TJ*“-“(S)ds = si2n-3)(f) 
b 

(2.4) 

be the corresponding Fourier coefficients. Let us consider solutions of Eqs (2.4) for n = 1 with 
initial conditions T,“‘(f,) = b,, d7”“(t)ldr I,_+= c,. The solution of these equations for k = 1,2, . . . 
may be written in the form 

T,“‘(t) = x$(r) bk + #(t)ck, dT;“(r)/dt = X$f’(f)bk + Xg’(t)C k 

where the fundamental matrix (.$‘(t)) is such that (x:)(&J) = E,. 
Taking. the dissipative properties of visco-elastic materials into account, we will make the 

following assumption as to the behaviour of the functions x:)(t) : for all k = 1,2, , . . , constants 
A4 > 0, h, > 0 exist independent of k, such that for t E I 

l~,(;k)(t)I, Ix$‘(t)l, Ix$‘(r)l d Mexp[-ho(t-to)] (2.5) 

We shall also assume that the following conditions hold for the integral kernel I&(t) 

I K2W I s K1 exp(--P&, 01 --q/k, >o: K, >O, p, >O-const (2.6) 

We will give a simple example to show how the validity of conditions (2.5) may be related to the 

parameters of Eq. (2.4) for n = 1. Let Eq. (2.4) be 

d*T(‘) 

dt 1 +az(Ti’) + i k2(t-s)T/)(s)ds) = 0 
10 

k*(t)=Kexp(-pt) 
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K. B - const 

It follows from an analysis of the characteristic equation [12] that if B > 0, KC 0, p+ K > 0, its roots will 

have negative real parts for all real Q, and the solution of the equation will be exponentially stable. One 
can then find constants M, h, > 0 such that conditions (2.5) hold for all k = l, 2, . . . . In that situation 

I x~~‘(t) I6 C, la, and I xi?(t) IS CX, /C,, where C, > 0, C, > 0 are constants independent of k. 

Theorem 2. If conditions (2.5) and (2.6) hold, the equilibrium position of the visco-elastic 
rod corresponding to the trivial solution of Eq. (2.1) with boundary conditions (2.2) is 
asymptotically stable in Lyapunov’s sense with respect to perturbations of the initial conditions 
such that the functions q(z), v(z) E C3 and q”‘(z), d”(z) are of bounded variation. The angle 
of torsion in the perturbed motion is such that f3(z, t) + 0 exponentially as t + +m for each 
z E [0, 11, and the general solution of the problem is defined by a series (2.3) in which the 
function Tp-l(r), which tends exponentially to zero, depends on the constant Fourier 
coefficients b,,, and c,,, of the functions q(z) and w(z) in [0, I] relative to the system of functions 
sin(akz). The series (2.3) is a solution of Eq. (2.1) and converges absolutely and uniformly for 
all ZE[O, I], t E Z and p, 6, and c,,, such that pz;._l(Ibk I+lc, I) CS for some S> 0. 

Remark. Let us extend each of the functions q(z) and w( z) to the interval [I, 211 in such a way that the 
extended functions are even with respect to the straight line z= 1, and then extend it further to the 
interval [-21, 0] so that the extension is an odd function (relative to zero). One can then define these 
functions over the entire real axis as 41-periodic functions. The restrictions imposed on cp( z), w( z,) and 
their derivatives in Theorem 2, the boundary conditions and Eq. (2.1) itself imply that these periodic 
functions will have everywhere continuous third derivatives of bounded variation. Hence their Fourier 
coefficients satisfy the limit [15] 

(2.7) 

By (2.7), the solution of the linearized equation (2.1), expressed as a series, and the series for the first 

and second derivatives of U(x, t), converge absolutely and uniformly, so the linearized equation in the 
required form indeed has a solution. 

Proof of Theorem 2. Suppose that all the functions Tj2”-‘)(t), where 1 cm< n and 
k=l, 2, . . . , are determined from Eq. (2.4) with initial conditions Trm-*)(&)=O, 
dT,‘?“l’(t)l dt !_= 0 and satisfy the inequalities 

I Ti2”-“(t) I 6 Cexp[-h,(t -to)], C=const>O W3) 

m= 1.2, . . ..n-I 

Suppose that Tk(Zm-‘) (t), as series in the parameters b,, c, (q, r = 1, 2, . . .) are absolutely con- 
vergent. To determine Titi-‘) (t) we have Eq. (2.4), in which Sy-3)(t) is, for all fixed k, n, a 
seriesin ++l (i=l, 2 ,..., n-1)and Tpc2”-‘j(t) (s=l, 2,. . . , n-l; p=l, 2,. . .) with rational 
coefficients. The series Sym3) (t) in the parameters b, and c, is absolutely convergent, and by 
(2.8) and the properties of f(e), we have the limit 

I SL2n-3’(t) I d K(2n-3) exp[-33i,(t - to)] (2.9) 

where Kcke3) > 0 is a constant that depends on K (2m-3) for m c n. The solution of Eq. (2.4) with 
initial conditions Tjz”-‘) (to) = 0, dTj2”-“(t)ldt I,_+= 0 is given by the formula 

Tj2”-‘)(r) = i x,‘,c’(t - S)S:2n-3)(S) ds (2.10) 
‘0 
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from which, using (2.5) and (2.9) we obtain the limit 

t Tc(*“-“(1) 1 G MK’2”-3’(2h0)-’ expl&(t - too)] 

which in turn implies that the series for Ti2”-‘)(t) is absolutely convergent. 
Let V denote a majorant for the series (2.3) considered as an expansion in powers of p, b, 

and c,. Applying the procedure used in Sec. 1, we set up an equation for V 

v =Mp+ $f’(V), p = ~,(Ib,l+lc,I) (2.11) 
0 ¶z 

wherefr(6) is a majorant of the series for f(O) -a#. 
Equation (2.11) defines Vas a series in the parameter p, whose radius of convergence p,, is 

finite. For p, b,, and c, such that p G pO, the series (2.3) is absolutely and uniformly convergent 
for z E [0, [I, t E I. One can also show by constructing majorants that the series for a’e(z, 
and a’e(z, t)lat2 are absolutely and uniformly convergent. 

t)18z2 

The relation 

dT;*“-“(t) 

dt 
= j x;;‘(t -3) Si2n-1)(~) ds, n > 1 

‘0 

which is analogous to (2.10), implies 

a*T;*“-‘) (t) 
at* = x&t - t,)s~*“-“(to) + j &‘(t --s) 

% 
-$ Si*“-“(3) ds 

on whose basis one constructs a majorant series for a”e(z, t)lat2, similar to the series on the 
right of (2.11), which is absolutely convergent provided that (2.7) and (2.5) hold. 

Equation (2.1), with the solution determined for e(z, t) as Fourier series substituted into it, 
may be treated as a Volterra integral equation for the unknown a20(z, t)lat2. By virtue of the 
above, the right-hand side db(z, t) of this integral equation, expressed in terms of f(0) and 
&(z, t)lat2, will be finite. The solution of the integral equation, constructed using the 
resolvent I(?, s) [3,16] for the kernel kz(t -s), is 

a28 (z, t) 
az2 

= O(z,t) + ; r(t,s)~(z,s)& 
10 

I, a28 (2, t) 
Q(z, t) = - 

f(e) -- 
4 at* h 

(2.12) 

If (2.6) is true, the right-hand side of (2.12) is a bounded function and a28(z, t)laz* is an 
absolutely and uniformly convergent series for z E [0, I], t E I. 

Remark. The estimate (2.7) will also hold under slightly weaker assumptions concerning the properties 
of the functions cp( z) and v(z) than those of Theorem 2. It is sufficient to require that $“(z), v(t) be of 

bounded variation or absolutely continuous in [0, I]. 
If k;(t) is an exponential polynomial [12], it can be shown that, for the majorizing series for d’e(t, 

t)lde and 83(z, t)lil? to converge, the function v(z) must be such that C~ = 0(llk3). This means that 
cp”‘( z) and u/“(z) in the formulation of Theorem 2 must be of bounded variation or absolutely continuous 

in [O, I]. 

Series of type (2.3), which depend on arbitrary constants b,, c4 (p, q = 1, 2, . . .), may be 
considered for systems with distributed parameters as analogues of the series of Lyapunov’s 
first method. 
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Note that in order to investigate the stability of systems with after-effect or systems of processes with 

either lumped or distributed parameters, one often uses the method of Lyapunov functionals or functions 

[17,21], characterizing the process by one or two metrics. A comprehensive survey of research on stability 

in such systems may be found in the above-mentioned monographs, and also in [12,22-241. 
When investigating the torsion of a visco-elastic rod, a good measure of the initial perturbation (the 

deviation of the functions pcp( z), pv(z) and their first and second derivatives) is the following series, 
which is convergent under the assumptions of Theorem 2 

PO = ~~,r(I+n+n2)(la,l+la.,) 

Then, as follows from Theorem 2, for each fixed z E [0, I] one has exponential stability relative to the 

functions 6(z, f), a%(~, t)laz’&P, k = s + p = 1,2; s, p 2 0, s # p. 
In connection with Theorem 2, it should be mentioned that a related problem-the determination of 

perturbed motion for a given steady-state of a thermovisco-elastic system, represented by formal power 

series in parameters characterizing the applied perturbing forces, and the derivation of the spectral 
conditions of asymptotic stability relative to the perturbations-was treated in [25,26]. 
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